Yeast Cells Classification

Machine Learning Approach to Discriminate Saccharomyces cerevisiae Yeast Cells Using Sophisticated Image Features.

Mohamed Tleis

Supervisor: Fons J. Verbeek

Leiden University

October 15, 2015

 ${\rm IB\text{-}2015}$ ${\bf 11^{th}} \ {\rm Integrative \ BioInformatics \ International \ Symposium}$

Table of Contents

- Introdution
- 2 Features
- 3 Classification
- 4 Results
- 6 Conclusion

Introdution

Section 1

Introdution

Saccharomyces cerevisiae

- Originally isolated from grapes skin.
- Intensively studied eukaryotic model.
- Used to understand gene behaviour, under stress response.

BMH1-GFP under high stress 50mM NaCl media

Image Analysis Platform

- Has the following components:
 - Segmentation Module.
 - Measurement Module.
 - Statistics and Data Visualization Module.
 - GUI.

Image Analysis Workflow

Yeast Cells Image Modality

- Images Acquired by Zeiss LSM5 Exciter.
 - 2-Channels
 - Bright-Field
 - GFP- Protein

Yeast Cells Segmentation

 Segmentation on Bright-Field Channels.

Resulted masks used to measure all channels.

Hough Transform To Detect Circles

- Detect Geometrical Circles.
 - Using 3D cube-like Accumulator.
 - Threshold to estimate cell locations.

$$T = 2\pi r - \{2\pi r \times \alpha + p\}$$
$$p = \beta \times (r_{max} - r_{min}) - r_{index}$$

Introdution

Measurement Module

- Subtle patterns not easy to be extracted.
- Sometimes it's not possible to see differences in cell groups.
- We need an automatic system to extract hidden features.

Machine Learning

Section 2

Features

- A feature is a representation/attribute of an image.
- Texture:
 - is the visual effect produced by spatial distribution of variations.
 - is a rich Source of visual Information.
- Feature Extraction is locating pixels with distinctive characteristics.

First-Order Histogram

• An Image as a function f(x, y).

$$h(i) = \sum_{x=0}^{N-1} \sum_{y=0}^{M-1} \delta(f(x, y), i), \qquad (1)$$

$$\delta(j,i) = \begin{cases} 1, j = i \\ 0, j \neq i \end{cases}$$
 (2)

Features	Description
Size	The number of pixels occupied by the cell.
Total Intensity	Sum of intensity values of pixels occupied by the cell.
Intensity Stan-	The standard deviation from the mean (intensity/pixel)
dard Deviation	of the intensity values at each pixel.
Perimeter	Cell perimeter.
Circularity	The circularity of detected shapes.
	$Circularity = \frac{4\pi Size}{perimeter^2}.$ (3)
Vacuole Size	Estimation of the vacuole size.
Membrane Fea-	Size, total Intensity, Intensity standard deviation.
tures	

Textures based on First-Order Histogram

Textures	Description
Variance	Measure of intensity contrast.
	$\mu_2(z) = \sum_{i=0}^{L-1} (z_i - m)^2 . P(z_i)$
Relative	Zero for constant intensities.
Smoothness	$R(z) = 1 - \frac{1}{1 + \sigma^2(z)}$
Skewness	Indication of the skewness of the histogram. $\mu_3(z) = \sum_{i=0}^{L-1} (z_i - m)^3 . P(z_i)$
Uniformity	Has a maximum value when intensity levels are equal. $U(z) = \sum_{i=0}^{L-1} P^2(z_i)$
Entropy	A measure of variability, is zero for constant images. $e(z) = -\sum_{i=0}^{L-1} P(z_i) . log_2 P(z_i)$

Features

Moment Invariants

- An image moment:
 - Is a certain particular weighted average, i.e. moment of pixel intensities.
 - Computed based on the information from shape and interior region.
 - Useful descriptor after segmentation.
- Simple Properties from low order moments.
- Invariant to translation, scale and rotation.
- frequently used as features for:
 - Image Processing.
 - Remote sensing.
 - Shape recognition.
 - Classification.

Hu's Set of Moment Invariants

$$hu = \{\Phi_1, \Phi_2, \Phi_3, \Phi_4, \Phi_5, \Phi_6, \Phi_7\}.$$

- Are widely Known set of seven invariants.
- Φ_1 & Φ_2 are based on second order moments.
- \bullet Φ_3 ... Φ_7 are based on third order moments.
- More effective when fused with other techniques.

Co-occurrence Matrix

- Simple texture attributes can not characterize cells.
- Similar texutres agree in their second-order statistics.
- Second Order statistics:
 - Are given by pairs of pixels.
 - Have good discrimination rates.
 - Important in automated image analysis.
 - Features derived from co-occurrence matrix.
- Co-occurrence Matrix:
 - For Image f(x,y) with L discrete levels (Dimension L x L).
 - The $(i, j)^{th}$ is # of times that f(x1,y1) = i and f(x2,y2) = j.
 - where $(x2,y2) = (x1,y1) + (d \cdot \cos \theta, d \cdot \sin \theta)$.

Co-occurrence Matrix Derived Features

- Features used for texture discrimination.
 - Angular Second Moment.
 - Correlation.
 - Intertia.
 - Absolute Value.
 - Inverse Difference.
 - Entropy.
 - Maximum Probability.

Multi-Scale Features

- Methods to calculate multi-scale features:
 - Wigner Ditributions.
 - Has interference terms between components.
 - Gabor Transform.
 - Non-orthogonal -> Redundant features.
 - Wavelet Transforms.

Section 3

Classification

- Dataset of 1440 yeast cell instances.
- 14-3-3 proteins with GFP in 50mM vs. 0mM NaCl
- Measure all features per individual cell instance
- Construct a contigency table to represent dispositions of the set of instances.
- Evaluate 23 different linear and non-linear classifiers.
 - ... including: decision trees, naive Bayes, least-square linear preictors, SVM, etc...

Imbalanced Dataset & Sampling Techniques

- Unequal distribution between classes.
- Sampling Techniques improves classifier accuracy.
 - UnderSampling.
 - OverSampling.
 - SMOTE.

Data Scaling, i.e. Normalization

- Applied at data pre-processing.
- Some Algorithms will not work without Normalization.
- Normalization Techniques:

• UL.
$$x_i^* = \frac{x_i}{||x||}, i = 1, 2, ...d,$$

• MV.
$$x_i^* = \frac{(x_i - \mu)}{\sigma}, i = 1, 2, .., d,$$

Feature (Attribute) Selection

- To optimally reduce feature space.
- Advantages:
 - Improves the prediction performance.
 - Provides faster and more cost effective classifiers.
 - Provides a better understanding of the underlying process that generated the data.
 - Reduces overfitting.
 - Reduces training time.
- Avoid selecting redundant and irrelevant features.
- Selected Algorithms:
 - Information Gain (IG).
 - Correlation Feature Selection (CFS).
 - Principal Component Analysis (PCA).

Evaluation metrics, ROC and AUC

- ROC curve is a 2D graphical plot.
 - \bullet **AUC** = **1**, Perfect
 - 1 > AUC > 0.9, Excellent.
 - 0.9 > AUC > 0.8, Good.
 - 0.8 > AUC > 0.7, Fair.
 - 0.7 > AUC > 0.6, Poor.

Classifiers Evaluated

- 23 different classifiers.
- \bullet Using Weka, R and rWeka

Results

Results •000000

AUC vs. Amin

Power of Sampling

Normalization and Feature Selection

$\overline{\text{SVM} : \text{SMO}}$

Performance of SMO classifier after data processing

Analysis and AUC value of Logistic Classifier

Analysis and AUC value of C4.5 Classifier

Performance of Classifiers using second and up-to third order invariant moment features

Section 5

Conclusion

- A machine learning approach can discriminate yeast cells cultivated under different stress levels.
- A feature set is powerful in predicting cell groups, combined features from 1st-order histogram, moment invariants, Co-occurrence matrix and Wavelet-based texture features.
- Using SMOTE for data sampling, MV for data normalization and IG for feature selection.
- As future work:
 - Classify different cell strains and conditions in a high-volume HTS studies.
 - $\bullet~$ Use developmental techniques to create optimal classifier.

Acknowledgement

- Correspondence : {m.tleis, f.j.verbeek}@liacs.leidenuniv.nl
- Supervisor : Dr. Ir. Fons J. Verbeek (section Imaging & BioInformatics, LIACS)
- Contributors:

