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Section 1

Introdution
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Saccharomyces cerevisiae

• Originally isolated from
grapes skin.

• Intensively studied eukaryotic
model.

• Used to understand gene
behaviour, under stress
response.

Saccharomyces cerevisiae. . .
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BMH1-GFP under high stress 50mM NaCl media
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Image Analysis Platform

• Has the following components:

Segmentation Module.

Measurement Module.

Statistics and Data
Visualization Module.

GUI.
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Image Analysis Workflow
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Yeast Cells Image Modality

• Images Acquired by Zeiss
LSM5 Exciter.

2-Channels
Bright-Field
GFP- Protein
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Yeast Cells Segmentation

Segmentation on
Bright-Field Channels.

Resulted masks used to
measure all channels.
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Hough Transform To Detect Circles

Detect Geometrical Circles.

Using 3D cube-like
Accumulator.

Threshold to estimate cell
locations.

T = 2πr −{2πr ×α+ p}
p = β×(rmax−rmin)−rindex

Center(x, y)

A(x, y, r)
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Dynamic Programming
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Measurement Module

Subtle patterns not easy to be extracted.
Sometimes it’s not possible to see differences in cell groups.
We need an automatic system to extract hidden features.
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Machine Learning
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Section 2

Features
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Feature, Texture & Extraction Techniques

A feature is a representation/attribute of an image.

Texture :
is the visual effect produced by spatial distribution of variations.
is a rich Source of visual Information.

Feature Extraction is locating pixels with distinctive
characteristics.
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First-Order Histogram

An Image as a function f (x, y).

h(i) =
N−1∑
x=0

M−1∑
y=0

δ(f (x, y), i), (1)

δ(j , i) =

{
1, j = i
0, j 6= i (2)
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Features based on First-Order Histogram

Features Description
Size The number of pixels occupied by the cell.
Total Intensity Sum of intensity values of pixels occupied by the cell.
Intensity Stan-
dard Deviation

The standard deviation from the mean (intensity/pixel)
of the intensity values at each pixel.

Perimeter Cell perimeter.
Circularity The circularity of detected shapes.

Circularity =
4πSize

perimeter2
. (3)

Vacuole Size Estimation of the vacuole size.
Membrane Fea-
tures

Size, total Intensity, Intensity standard deviation.
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Textures based on First-Order Histogram

Textures Description
Variance Measure of intensity contrast.

µ2(z) =
∑L−1

i=0 (zi −m)2.P(zi )

Relative
Smoothness

Zero for constant intensities.
R(z) = 1− 1

1+σ2(z)

Skewness Indication of the skewness of the histogram.
µ3(z) =

∑L−1
i=0 (zi −m)3.P(zi )

Uniformity Has a maximum value when intensity levels are equal.
U(z) =

∑L−1
i=0 P2(zi )

Entropy A measure of variability, is zero for constant images.
e(z) = −

∑L−1
i=0 P(zi ).log2P(zi )
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Moment Invariants

An image moment:
Is a certain particular weighted average, i.e. moment of pixel
intensities.
Computed based on the information from shape and interior
region.
Useful descriptor after segmentation.

Simple Properties from low order moments.
Invariant to translation, scale and rotation.
frequently used as features for:

Image Processing.
Remote sensing.
Shape recognition.
Classification.
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Hu’s Set of Moment Invariants

hu = {Φ1,Φ2,Φ3,Φ4,Φ5,Φ6,Φ7}.

Are widely Known set of seven invariants.

Φ1 & Φ2 are based on second order moments.

Φ3 ... Φ7 are based on third order moments.

More effective when fused with other techniques.
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Co-occurrence Matrix

Simple texture attributes can not characterize cells.

Similar texutres agree in their second-order statistics.

Second Order statistics:
Are given by pairs of pixels.
Have good discrimination rates.
Important in automated image analysis.
Features derived from co-occurrence matrix.

Co-occurrence Matrix:
For Image f(x,y) with L discrete levels (Dimension L x L).
The (i , j)th is # of times that f(x1,y1) = i and f(x2,y2) = j.
where (x2,y2) = (x1,y1) + (d·cos θ, d·sin θ).
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Co-occurrence Matrix Derived Features

Features used for texture discrimination.

Angular Second Moment.

Correlation.

Intertia.

Absolute Value.

Inverse Difference.

Entropy.

Maximum Probability.
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Multi-Scale Features

Methods to calculate multi-scale features:

Wigner Ditributions.
Has interference terms between components.

Gabor Transform.
Non-orthogonal –> Redundant features.

Wavelet Transforms.
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Section 3

Classification
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Classification

Dataset of 1440 yeast cell instances.

14-3-3 proteins with GFP in 50mM vs. 0mM NaCl

Measure all features per individual cell instance

Construct a contigency table to represent dispositions of the set of
instances.

Evaluate 23 different linear and non-linear classifiers.
... including: decision trees, naive Bayes, least-square linear
preictors, SVM, etc...
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Imbalanced Dataset & Sampling Techniques

Unequal distribution between classes.

Sampling Techniques improves classifier accuracy.

UnderSampling.

OverSampling.

SMOTE.
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Data Scaling, i.e. Normalization

Applied at data pre-processing.

Some Algorithms will not work without Normalization.

Normalization Techniques:
UL. xi

∗ = xi
||x|| , i = 1, 2, ...d ,

MV. xi
∗ = (xi−µ)

σ
, i = 1, 2, ., d ,
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Feature (Attribute) Selection

To optimally reduce feature space.
Advantages:

Improves the prediction performance.
Provides faster and more cost effective classifiers.
Provides a better understanding of the underlying process that
generated the data.
Reduces overfitting.
Reduces training time.

Avoid selecting redundant and irrelevant features.
Selected Algorithms:

Information Gain (IG).
Correlation Feature Selection (CFS).
Principal Component Analysis (PCA).

Mohamed Tleis (Leiden University) Yeast Cells Classification 27 / 40



Introdution Features Classification Results Conclusion

Evaluation metrics, ROC and AUC

ROC curve is a 2D graphical
plot.

AUC = 1, Perfect
1 > AUC ≥ 0.9, Excellent.
0.9 > AUC ≥ 0.8, Good.
0.8 > AUC ≥ 0.7, Fair.
0.7 > AUC ≥ 0.6, Poor.

1-Specificity (FPR)
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Classifiers Evaluated

23 different classifiers.

Using Weka, R and rWeka
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Section 4

Results
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AUC vs. Amin
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Power of Sampling
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Normalization and Feature Selection

Mohamed Tleis (Leiden University) Yeast Cells Classification 33 / 40



Introdution Features Classification Results Conclusion

SVM : SMO

Mohamed Tleis (Leiden University) Yeast Cells Classification 34 / 40



Introdution Features Classification Results Conclusion

Analysis and AUC value of Logistic Classifier
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Analysis and AUC value of C4.5 Classifier
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Performance of Classifiers using second and up-to
third order invariant moment features

C4.5 Logistic
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Section 5

Conclusion
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Conclusion

A machine learning approach can discriminate yeast cells cultivated
under different stress levels.

A feature set is powerful in predicting cell groups, combined features
from 1st-order histogram, moment invariants, Co-occurrence matrix and
Wavelet-based texture features.

Using SMOTE for data sampling, MV for data normalization and IG for
feature selection.

As future work:
Classify different cell strains and conditions in a high-volume
HTS studies.
Use developmental techniques to create optimal classifier.
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